Strategies to compute: $\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right]$

Special note: If given two fractions, combine them (common denom).

Try plugging in the value:

- 1. If denominator ≠ 0, done!
- 2. If denom = 0 & numerator \neq 0, the answer is $-\infty$, $+\infty$ or DNE. Examine the sign of the output from each side.
- 3. If denom = 0 & numerator = 0,
 Use algebra to simplify and cancel until either
 the numerator or denominator is not zero.

Strategy 1: Factor/Cancel

Strategy 2: Simplify Fractions

Strategy 3: Expand/Simplify

Strategy 4: Multiply by Conjugate (if you see radicals)

Strategies to compute: $\lim_{x\to\infty} f(x)$

Special note: Combine into one fraction (might need conjugate if given two terms involving a radical).

1. Is it a known limit?

$$\lim_{x \to \infty} \frac{1}{x^a} = 0, \text{ if } a > 0; \quad \lim_{x \to \infty} e^{-x} = 0;$$

$$\lim_{x \to \infty} \ln(x) = \infty; \quad \lim_{x \to \infty} \tan^{-1}(x) = \frac{\pi}{2}.$$

2. Rewrite in terms of known limits:

Strategy 1: Multiply top/bottom by $\frac{1}{x^a}$, where a is the largest power.

Strategy 2: Multiply top/bottom by e^{-rx}.

Special note:

If x is positive, then $x = \sqrt{x^2}$. If x is negative, then $x = -\sqrt{x^2}$.