Special note: If given two fractions, combine them (common denom).

Try plugging in the value:

1. If denominator $\neq 0$, done!
2. If denom $=0 \&$ numerator $\neq 0$,
the answer is $-\infty,+\infty$ or DNE. Examine the sign of the output from each side.
3. If denom $=\mathbf{0} \&$ numerator $=\mathbf{0}$, Use algebra to simplify and cancel until either the numerator or denominator is not zero.

Strategy 1: Factor/Cancel
Strategy 2: Simplify Fractions
Strategy 3: Expand/Simplify
Strategy 4: Multiply by Conjugate (if you see radicals)

Strategies to compute: $\lim _{x \rightarrow \infty} f(x)$
Special note: Combine into one fraction (might need conjugate if given two terms involving a radical).

1. Is it a known limit?

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{1}{x^{a}}=0, \text { if } a>0 ; \lim _{x \rightarrow \infty} e^{-x}=0 \\
& \lim _{x \rightarrow \infty} \ln (x)=\infty ; \lim _{x \rightarrow \infty} \tan ^{-1}(x)=\frac{\pi}{2}
\end{aligned}
$$

2. Rewrite in terms of known limits:

Strategy 1: Multiply top/bottom by $\frac{1}{x^{a}}$, where a is the largest power.
Strategy 2: Multiply top/bottom by $\mathrm{e}^{-\mathrm{rx}}$.
Special note:
If x is positive, then $x=\sqrt{x^{2}}$.
If x is negative, then $x=-\sqrt{x^{2}}$.

